Radiation Dose Assessment of Tritium Released from the Thorium Molten Salt Reactor
Wenyu Cheng, Jie Liang, Mingjun Zhang, Fei Wei, Jinglin Li, Xiaochong Xue, Youshi Zeng, Ke Deng, Qin Zhang, Wei Liu
Received:July 5, 2022
Accepted:December 9, 2022
Published:June 13, 2023
Large amounts of tritium will inevitably be produced during operation from the Thorium Molten Salt Reactor (TMSR) fueled by lithium salt, which is detrimental to the human body. Therefore, it is necessary to evaluate the radiation dose of the generated tritium. The tritium production, emission, and radiation dose of TMSRs were estimated by numerical calculation. According to this study, a 2-MW(thermal) TMSR produces 3.33E+14 Bq·yr−1 of tritium, discharges 2.42E+13 Bq·yr−1 of tritium, and causes 1.06 μSv·yr−1 of radiation dose. A 30-MW(thermal) TMSR produces 5.00E+15 Bq·yr−1 of tritiu.m, discharges 3.62E+14 Bq·yr−1 of tritium, and causes 2.02 μSv·yr−1 of radiation dose. A 2250-MW(thermal) TMSR produces 3.75E+17 Bq·yr−1 of tritium, discharges 2.77E+16 Bq·yr−1 of tritium, and causes 79 μSv·yr−1 of radiation dose. The radiation dose of TMSRs is much less than 1 mSv·yr−1, which is the dose limit for internal recruitment in China. It is determined that TMSRs are safe for humans regarding tritium hazard.