Home / Publications / Journals / Nuclear Technology / Volume 168 / Number 3
Nuclear Technology / Volume 168 / Number 3 / December 2009 / Pages 888-893
Shielding / Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (PART 3) / Radiation Protection / dx.doi.org/10.13182/NT09-A9323
Articles are hosted by Taylor and Francis Online.
CERN is at present designing a new chain of accelerators to replace the present Proton Synchrotron (PS) complex: a 160-MeV room-temperature linear accelerator (linac) (Linac4) to replace the present 50-MeV linac injector, a 3.5-GeV superconducting proton linac (SPL) to replace the 1.4-GeV PS booster, and a 50-GeV synchrotron to replace the 26-GeV PS. Linac4 has been funded, and civil engineering will start soon, while the SPL is in an advanced stage of design. Beyond injecting into the future 50-GeV PS, the ultimate goal of the SPL is to generate a 4-MW beam to produce intense neutrino beams. The radiation protection design is driven by the latter requirement. This work summarizes the radiation protection studies conducted so far for Linac4. The calculations of the shielding, access maze, ducts for cables, waveguides, and ventilations were performed with the FLUKA Monte Carlo code, complemented by analytical estimates.