Home / Publications / Journals / Nuclear Technology / Volume 168 / Number 2
Nuclear Technology / Volume 168 / Number 2 / November 2009 / Pages 369-372
Neutron Measurements / Special Issue on the 11th International Conference on Radiation Shielding and the 15th Topical Meeting of the Radiation Protection and Shielding Division (Part 2) / Radiation Protection / dx.doi.org/10.13182/NT09-A9211
Articles are hosted by Taylor and Francis Online.
In this technical note we report on a slight but important modification in a recently developed backscattered neutron-based void fraction evaluation scheme for slab materials, and we describe an add-on numerical scheme for computing total (direct plus diffuse) neutron transmission through a test slab. In the void fraction evaluation scheme, the broad neutron beam consists of a monodirectional (singular), normally incident component and a smooth (regular), angularly continuous component, i.e., a mixed neutron beam. Once the void fraction of the test slab has been evaluated, the diffuse component of the angular flux of transmitted neutrons can be computed from an accurate spherical harmonics-discrete ordinates solution of the neutron beam transport problem defined in a reduced slab domain (the direct component is rather straightforward to compute). The add-on scheme described here can be used to evaluate the amount of neutrons that escape from the slab through the back side. Numerical results are given to illustrate the usefulness of our add-on scheme in neutron shielding studies.