American Nuclear Society
Home

Home / Publications / Journals / Nuclear Technology / Volume 209 / Number 12

RANS-Based CFD Simulation of Jet-Induced Mixing and Jet Impingement on Large Bubble in Microgravity

Eymon Lan, Shanbin Shi

Nuclear Technology / Volume 209 / Number 12 / December 2023 / Pages 2016-2029

Research Article / dx.doi.org/10.1080/00295450.2022.2157661

Received:October 3, 2022
Accepted:December 8, 2022
Published:November 10, 2023

For National Aeronautics and Space Administration’s space mission planning, tons of cryogenic propellants need to be stored under microgravity conditions. Because of heat leaks into cryogenic propellant tanks, thermal stratification develops from lack of natural convection leading to boil-off of precious propellants. A thermodynamic vent system operates with a jet mixer to reduce thermal gradients within the fluid and control pressure inside the tank. In this work, a Reynolds-averaged Navier-Stokes–based computational fluid dynamics model was developed to study the fluid dynamics of jet-induced mixing and jet impingement on the large ullage bubble in the Tank Pressure Control Experiment (TPCE) under microgravity conditions. First, the computational model was benchmarked against existing experimental flow visualization data on the jet impingement. The jet mixing was then compared quantitatively with correlations for the jet radius to analyze the volumetric flow rate of the jet due to entrainment in the near field of the nozzle. The findings show that the confinement of the jet due to the ullage and the walls contributes positively to the jet entrainment rate, thus increasing the jet volumetric flow rate. In addition, the turbulence parameters are plotted to study the flow development for the TPCE case where the jet does not penetrate the ullage. Last, the model was used to determine the jet Weber number for penetration on the ullage bubble by varying jet inlet velocities. Numerical results show that the jet can penetrate the ullage when the jet Weber number is greater than 1.3.