Home / Publications / Journals / Nuclear Technology / Volume 209 / Number 9
Nuclear Technology / Volume 209 / Number 9 / September 2023 / Pages 1365-1372
Research Article / dx.doi.org/10.1080/00295450.2023.2199098
Articles are hosted by Taylor and Francis Online.
With the advancement of artificial intelligence technology, intelligent diagnostic technology has been gradually implemented across various industries. This study proposes the use of convolutional neural networks–long short-term memory (CNNs-LSTM) for diagnosing faults in CPR1000 nuclear power plants (NPPs). To automatically extract data related to different types and levels of faults in the PCTRAN program, the study utilizes a self-developed AutoPCTRAN software and selects several key nuclear parameters as feature quantities. The study uses random sampling to create the training, validation, and test sets in an 8:1:1 ratio and identifies acceptable parameters to build the CNN-LSTM model. Test results show that the CNN-LSTM–based model for diagnosing CPR1000 NPP faults achieves a problem recognition rate of 99.6%, which validates the efficacy of the CNN-LSTM–based nuclear power fault diagnosis model.