American Nuclear Society
Home

Home / Publications / Journals / Nuclear Technology / Volume 207 / Number 7

Rattlesnake: A MOOSE-Based Multiphysics Multischeme Radiation Transport Application

Yaqi Wang, Sebastian Schunert, Javier Ortensi, Vincent Laboure, Mark DeHart, Zachary Prince, Fande Kong, Jackson Harter, Paolo Balestra, Frederick Gleicher

Nuclear Technology / Volume 207 / Number 7 / July 2021 / Pages 1047-1072

Technical Paper / dx.doi.org/10.1080/00295450.2020.1843348

Received:July 15, 2020
Accepted:October 26, 2020
Published:July 9, 2021

Advanced reactor concepts span the spectrum from heat pipe–cooled microreactors, through thermal and fast molten-salt reactors, to gas- and salt-cooled pebble bed reactors. The modeling and simulation of each of these reactor types comes with their own geometrical complexities and multiphysics challenges. However, the common theme for all nuclear reactors is the necessity to be able to accurately predict neutron distribution in the presence of multiphysics feedback. We argue that the current standards of modeling and simulation, which couple single-physics, single-reactor-focused codes via ad hoc methods, are not sufficiently flexible to address the challenges of modeling and simulation for advanced reactors. In this work, we present the Multiphysics Object Oriented Simulation Environment (MOOSE)–based radiation transport application Rattlesnake. The use of Rattlesnake for the modeling and simulation of nuclear reactors represents a paradigm shift away from makeshift data exchange methods, as it is developed based on the MOOSE platform with its very natural form of shared data distribution. Rattlesnake is well equipped for addressing the geometric and multiphysics challenges of advanced reactor concepts because it is a flexible finite element tool that leverages the multiphysics capabilities inherent in MOOSE. This paper focuses on the concept and design of Rattlesnake. We also demonstrate the capabilities and performance of Rattlesnake with a set of problems including a microreactor, a molten-salt reactor, a pebble bed reactor, the Advanced Test Reactor at the Idaho National Laboratory, and two benchmarks: a multiphysics version of the C5G7 benchmark and the LRA benchmark.