Home / Publications / Journals / Nuclear Technology / Volume 207 / Number 3
Nuclear Technology / Volume 207 / Number 3 / March 2021 / Pages 376-388
Technical Paper / dx.doi.org/10.1080/00295450.2020.1777035
Articles are hosted by Taylor and Francis Online.
This study proposes an interpolation-based response surface surrogate methodology to manage a large number of scenarios in dynamic probabilistic risk assessment. It adopts the shape Dynamic Time Warping algorithm to cluster the interpolation neighborhood from time series sample data. The interpolation method was adapted from Taylor Kriging to allow a reduced-order model of the Taylor series. In order to demonstrate its applicability to complex issues in risk assessment for nuclear engineering, an example risk response surface to estimate emergency core cooling system (ECCS) criteria for triplex silicon carbide (SiC) accident-tolerant fuel was constructed. The response surface was exploited to estimate the cumulative failure probability of the fuel cladding structure due to the uncertainties in operator actions and safety systems. The functional failures were assessed based on a combination of individual layer failures computed by coupling Risk Analysis Virtual Environment software with a pressurized water reactor 1000-MW(electric) RELAP5 model and the in-house fuel performance assessment module. Results showed that SiC cladding failure probability spiked less than 1 min after a large-break loss-of- coolant accident whenever the current ECCS criteria for Zircaloy-4 (Zr-4) cladding was used. However, it still provides an increased safety margin of three orders of magnitude compared to Zr-4. This positive margin could be utilized to relax active ECCS requirements by allowing deviations of up to 450 s in its actuation time. The proposed surrogate methodology generated a response surface of SiC cladding failure probability reasonably well, with a significant savings of computation time. This methodology is expected to be useful in the analysis of system response with complex uncertainty sources.