American Nuclear Society
Home

Home / Publications / Journals / Nuclear Technology / Volume 206 / Number 8

LEU NTP Engine System Trades and Mission Options

C. Russell Joyner, II, Michael Eades, James Horton, Tyler Jennings, Timothy Kokan, Daniel J. H. Levack, Brian J. Muzek, Christopher B. Reynolds

Nuclear Technology / Volume 206 / Number 8 / August 2020 / Pages 1140-1154

Technical Paper / dx.doi.org/10.1080/00295450.2019.1706982

Received:September 10, 2019
Accepted:December 16, 2019
Published:August 4, 2020

The future of human exploration missions to Mars is dependent on solutions to the technology challenges being worked on by the National Aeronautics and Space Administration (NASA) and industry. One of the key architecture technologies involves propulsion that can transport the human crew from Earth orbit to other planets and back to Earth with the lowest risk to crew and the mission. Nuclear thermal propulsion (NTP) is a proven technology that provides the performance required to enable benefits in greater payload mass, shorter transit time, wider launch windows, and rapid mission aborts due to its high specific impulse and high thrust.

Aerojet Rocketdyne (AR) has stayed engaged for several decades in working NTP engine systems and has worked with NASA recently to perform an extensive study on using low-enriched uranium NTP engine systems for a Mars campaign involving crewed missions from the 2030s through the 2050s. Aerojet Rocketdyne has used a consistent set of NASA ground rules and they are constantly updated as NASA adjusts its sights on obtaining a path to Mars, now via the Lunar Operations Platform-Gateway. Building on NASA’s work, AR has assessed NTP as the high-thrust propulsion option to transport the crew by looking at how it can provide more mission capability than chemical or other propulsion systems.

The impacts of the NTP engine system on the Mars transfer vehicle configuration have been assessed via several trade studies since 2016, including thrust size, number of engine systems, liquid hydrogen stage size, reaction control system sizing, propellant losses, NASA Space Launch System (SLS) payload fairing size impact, and aggregation orbit.

An AR study activity in 2018 included examining NTP stages derived from Mars crew mission elements to deliver extremely large cargo via multiple launches or directly off the NASA SLS. This paper provides an update on the results of the ongoing engine system and mission trade studies.