Home / Publications / Journals / Nuclear Technology / Volume 206 / Number 3
Nuclear Technology / Volume 206 / Number 3 / March 2020 / Pages 444-457
Technical Paper / dx.doi.org/10.1080/00295450.2019.1631052
Articles are hosted by Taylor and Francis Online.
The Advanced Test Reactor (ATR) has been used successfully for the testing of fast reactor fuel for nearly two decades. These successes have been in spite of numerous challenges for testing fast reactor fuel in the ATR (a thermal spectrum reactor), but the solutions to those challenges have resulted in excessively long irradiation times (~10 years) for high-burnup targets as well as experiments that are highly sensitive to fabrication tolerances and eccentricities. This paper presents a solution to the problems of extended irradiation times and fabrication sensitivities. Thermal and neutronic analyses were performed to show that a reduced-diameter fuel pin with an equivalent linear heat generation rate can provide a prototypic thermal profile (peak centerline and inner clad temperature) along with a near-prototypic power profile within the ATR thermal spectrum. This allows the experiment to reach a high burnup in an expeditious timeframe compared to traditional ATR fast fuel irradiations. In addition, problems with fabrication sensitivities were addressed by introducing a double-encapsulated experiment that pushes the high heat flux helium gap farther away from the fuel pin. Fuel pin position eccentricities are also mitigated by using a large sodium bond between the pin and capsule fuel. The advantages and potential pitfalls of this revised design are discussed, including the effect of length scales on fuel system behavior.