American Nuclear Society
Home

Home / Publications / Journals / Nuclear Technology / Volume 206 / Number 2

Simulation of Boiling Two-Phase Flow in a Helical Coil Steam Generator Using the Spectral Element Code Nek-2P

Dillon R. Shaver, Nate Salpeter, Ananias Tomboulides, Prasad Vegendla, Adrian Tentner, W. David Pointer, Elia Merzari

Nuclear Technology / Volume 206 / Number 2 / February 2020 / Pages 375-387

Technical Paper / dx.doi.org/10.1080/00295450.2019.1664199

Received:April 23, 2019
Accepted:September 3, 2019
Published:January 15, 2020

To enable the design of a light water small modular reactor, the boiling flow inside a helical coil steam generator has been simulated with the two-fluid model in Nek-2P. Nek-2P is the multiphase branch of the spectral element code Nek5000. Details of the implementation of the two-fluid model and the included closure models are discussed. The presented closure models include interactions for momentum, heat, and mass transfer between phases. Models for the drag, lift, and turbulent dispersion forces are included. The complete model is fully consistent in the limits of both phasic volume fractions approaching zero and is able to simulate flows of dispersed vapor, continuous liquid, dispersed liquid, continuous vapor, or any combination thereof. The closure models and their implementation in Nek-2P have been validated by comparing to experimental data for a boiling flow, demonstrating excellent agreement. Results from the simulation of the helical coil indicate strong phasic separation driven by the effects of buoyancy and inertia. Significant differences were observed in the results compared to simulations performed using Star-CCM+, although these differences were somewhat expected.