American Nuclear Society
Home

Home / Publications / Journals / Nuclear Technology / Volume 203 / Number 3

Development of a Validation Approach for an Integrated Waste Glass Melter Model

Donna Post Guillen, Alexander W. Abboud, Richard Pokorny, William C. Eaton, Derek Dixon, Kevin Fox, Albert A. Kruger

Nuclear Technology / Volume 203 / Number 3 / September 2018 / Pages 244-260

Technical Paper / dx.doi.org/10.1080/00295450.2018.1458559

Received:December 7, 2017
Accepted:March 24, 2018
Published:August 15, 2018

Integrated models are being developed to represent the physics occurring within the high-level and low-activity waste melters that will be used to vitrify legacy tank waste at the Hanford site. These models couple the melt pool, cold cap, and plenum region within a single computational domain. Validation of the models is essential to ensure the reliability of the numerical predictions of the operational melters. Experimental data from laboratory- and pilot-scale tests are thus being used to inform and validate various aspects of the melter model. This paper presents a tiered approach to model validation consisting of a series of progressively more complex test cases designed to model the physics occurring in the full-scale system. A hierarchical methodology has been developed to segregate and simplify the physical phenomena affecting the multiphase flow and heat transfer within a waste glass melter. Four hierarchical levels are defined in a validation pyramid and built up in levels of increasing complexity from unit problems to subsystem cases, to pilot-scale systems, and then to the full-scale system.