American Nuclear Society
Home

Home / Publications / Journals / Nuclear Technology / Volume 201 / Number 3

Extension of the Advanced Test Reactor Operating Envelope Via Enhanced Reactor Physics Validation Techniques

Joseph W. Nielsen, David W. Nigg, Daren R. Norman

Nuclear Technology / Volume 201 / Number 3 / March 2018 / Pages 228-246

Technical Paper / dx.doi.org/10.1080/00295450.2017.1356647

Received:April 17, 2017
Accepted:July 14, 2017
Published:February 16, 2018

The Korea Atomic Energy Research Institute is currently in the process of qualifying a low-enriched-uranium fuel element design for the new Ki-Jang Research Reactor (KJRR). As part of this effort, a prototype KJRR fuel element was irradiated for several operating cycles in the northeast flux trap of the Advanced Test Reactor (ATR) at the Idaho National Laboratory. The KJRR fuel element contained a very large quantity of fissile material (618 g 235U) in comparison with historical ATR experiment standards (<1 g 235U), and its presence in the ATR flux trap was expected to create a neutronic configuration that would be well outside of the approved validation envelope for the reactor physics analysis methods used to support ATR operations.

Accordingly, it was necessary to conduct an extensive set of new low-power physics measurements in the ATR Critical Facility (ATRC), a companion facility to the ATR, located in an immediately adjacent building and sharing the same fuel storage canal. The new measurements included fission power distributions, reactivity, and measurements related to the calibration of the in-core online instrumentation. The effort was focused on the objective of expanding the validation envelope for the computational reactor physics tools used to support ATR operations and safety analysis to include the planned KJRR irradiation in the ATR and similar experiments that are anticipated in the future.

The computational and experimental results have demonstrated that the neutronic behavior of the KJRR fuel element in the ATRC is well understood in terms of its general effects on ATRC core reactivity and fission power distributions and its effects on the calibration of the ATR Lobe Power Calculation and Indication System, as well as in terms of its own internal fission rate distribution and total fission power per unit ATRC core power. Taken as a whole, these results have significantly extended the ATR physics validation envelope, thereby enabling an entire new class of irradiation experiments.