Home / Publications / Journals / Nuclear Technology / Volume 192 / Number 3
Nuclear Technology / Volume 192 / Number 3 / December 2015 / Pages 299-307
Technical Paper / Accelerators / dx.doi.org/10.13182/NT14-132
Articles are hosted by Taylor and Francis Online.
The Applied Radiation Physics Group at Culham Centre for Fusion Energy, United Kingdom, has developed and applied state-of-the-art radiation mapping methods and tools. The tools enable complex shielding calculations in and around fusion devices, both during and after plasma operations, to inform on associated radiation fields for operational, maintenance, and remote handling scenarios, for example. Here, we present a description and application of those tools to produce radiation maps to support (a) the Joint European Torus (JET) operational safety case for a new D-T campaign that is foreseen for 2020, with neutron emission rates in excess of 1018 n/s and a total neutron yield up to 1.7 × 1021 n, and (b) the ITER device.
Three tools are presented in this paper: An automated global variance reduction tool applied to the JET facility; a portable bounding surface source referred to as a mesh source, which has been applied to activated materials; and a smeared source routine, which enables the calculation of integral fields associated with moving sources. These tools are demonstrated, in combination, to produce the integrated three-dimensional dose map of an activated divertor component being transported through a path within the ITER facility.