Home / Publications / Journals / Nuclear Technology / Volume 149 / Number 3
Nuclear Technology / Volume 149 / Number 3 / March 2005 / Pages 243-252
Technical Paper / Fission Reactors / dx.doi.org/10.13182/NT05-A3593
Articles are hosted by Taylor and Francis Online.
The integrity of the reactor pressure vessel (RPV) head and reactor internals was assessed by means of fluid and fluid-structural coupled analyses to evaluate the water hammer phenomenon arising from postulated high burnup fuel failure under reactivity initiated accident (RIA) conditions. The fluid viscosity effect on the water column burst as well as the complex three-dimensional flow paths caused by a core shroud and standpipes were considered in this study. It is shown that fluid viscosity becomes an influential factor to dissipate impacting kinetic energy. Integrity of the RPV head and the shroud head was ensured with a sufficient level of margin even under these excessively conservative RIA conditions.