Home / Publications / Journals / Nuclear Technology / Volume 107 / Number 1
Nuclear Technology / Volume 107 / Number 1 / July 1994 / Pages 103-111
Technical Paper / Special on ANP ’92 Conference / Nuclear Reactor Safety / dx.doi.org/10.13182/NT94-A35002
Articles are hosted by Taylor and Francis Online.
The steam line break (SLB) accident in pressurized water reactors is characterized by a large asymmetric cooling of the core, asymmetric stuck control rods, and large primary coolant flow variations. Because of these space- and time-dependent neutronic and thermal-hydraulic conditions in the core, former SLB analyses that used simplified core models were usually performed with many conservative assumptions. To clarify the complicated behavior of the core, the three-dimensional neutronic code CRONOS-2, the three-dimensional core thermal-hydraulic code FLICA-4, and the system code FLICA-S are completely coupled. The results obtained from the coupled codes indicate that the local thermal-hydraulic feedback effects are important in mitigating neutronic power excursions during SLBs.