Home / Publications / Journals / Nuclear Technology / Volume 66 / Number 1
Nuclear Technology / Volume 66 / Number 1 / July 1984 / Pages 175-185
C. 1. Mechanical Property / Status of Metallic Materials Development for Application in Advanced High-Temperature Gas-Cooled Reactor / Material / dx.doi.org/10.13182/NT84-A33465
Articles are hosted by Taylor and Francis Online.
The effect of a corroded surface layer on the tensile properties and the high-temperature low-cycle fatigue life was studied on Hastelloy-X and on Incoloy alloys 800 and 800H by comparing the properties between specimens exposed to air and high-temperature gas-cooled reactor helium at 1000°C prior to testing and specimens aged under the same temperature/time conditions as those of exposed specimens. The ratio of the corroded surface layer to the total cross-sectional area was controlled at 1000°C by environment, exposure time, and shape/size combinations of specimens. Tensile strength could be quantitatively expressed in terms of the intergranular oxidation, irrespective of the variation of materials and corrosive conditions. By comparing the low-cycle fatigue lives at 1000°C between exposed and aged materials, it was clarified that lifetime was remarkably reduced by the formation of a corroded surface layer. However, fatigue life of aged material was less than that of solution-treated materials. These two opposing effects of corrosion and aging brought about a small difference in fatigue life between solution-treated and exposed materials.