American Nuclear Society
Home

Home / Publications / Journals / Nuclear Technology / Volume 38 / Number 2

An Energy Alternative for Industry—The High-Temperature Gas-Cooled Reactor Steamer

A. T. McMain, Jr., Franz J. Blok

Nuclear Technology / Volume 38 / Number 2 / April 1978 / Pages 271-279

Technical Paper / Low-Temperature Nuclear Heat / Reactor / dx.doi.org/10.13182/NT78-A32024

Large industrial complexes are faced with new requirements that will lead to a transition from such fluid fuels as natural gas and oil to such solid fuels as coal and uranium for supply of industrial energy. Power plants using these latter fuels will be of moderate size [800 to 1200 MW(thermal)] and will generally have the capability of co-generating electric power and process steam. A study has been made regarding use of the 840-MW(thermal) Fort St. Vrain high-temperature gas-cooled reactor (HTGR) design for industrial applications. The initial conceptual design (referred to as the HTGR Steamer) is substantially simplified relative to Fort St. Vrain in that outlet helium and steam temperatures are lower and the reheat section is deleted from the steam generators. The Steamer has four independent steam generating loops producing a total of 277 kg/s (2.2 × 106 Ib/h) of prime steam at 4.5 MPa/672 K (650 psia/750°F). The unit co-generates 46 MW(electric) and provides process steam at 8.31 MPa/762 K (1200 psia/912°F). The basic configuration and much of the equipment are retained from the Fort St. Vrain design. The system has inherent safety features important for industrial applications. These and other features indicate that the HTGR Steamer is an industrial energy option deserving additional evaluation. Subsequent work will focus on parallel design optimization and application studies.