Home / Publications / Journals / Nuclear Technology / Volume 9 / Number 3
Nuclear Technology / Volume 9 / Number 3 / September 1970 / Pages 434-438
Radioisotope / Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material / dx.doi.org/10.13182/NT70-A28798
Articles are hosted by Taylor and Francis Online.
The self-absorption alpha range for the 5.5-MeV alpha emission in 238PuO2 was determined to be 11.7 ± 0.2 μm by measurement of the effective activity on microspkerical sources of from 150 to 250 μm diameter. A function was derived and experimentally tested which related the fractional escape of the total alpha emission to the range-radius ratio of the microspherical source. An energy distribution function was also derived for the alpha emission from a microspherical source which agreed quite well with the experimentally determined spectrum above 1 MeV. It is suggested that the derwed function provides a more accurate description of the energy region below 1 MeV than the experimental data.