Home / Publications / Journals / Nuclear Technology / Volume 3 / Number 7
Nuclear Technology / Volume 3 / Number 7 / July 1967 / Pages 399-405
Technical Paper and Note / dx.doi.org/10.13182/NT67-A27837
Articles are hosted by Taylor and Francis Online.
These studies were performed for the purpose of determining whether simple fuel alteration could lead to improved performance of neutron beam experiments at light-water-moderated reactors of the Bulk Shielding Facility (BSF) type. Thermal-neutron beams from split cores and a standard BSF core were characterized. Data were normalized to the standard core. For a split core with a 4-in. gap, the ratio of thermal neutrons-to-fast neutrons was improved by a factor of 6.6 ± 0.3 over that in a standard core; the ratio of thermal neutrons-to-gamma rays was improved by a factor of 2.9 ± 0.1 over that in a standard core. The thermal-neutron beam intensity was 67% of the value obtained from the standard core. Reactivity characteristics of split cores with a 4-in. gap were also investigated as a function of size. In an assembly with a built-in excess k of > 2.5%, it was found that one section of the core could be taken critical independent of the position of control rods in the other section.