Nuclear Science and Engineering / Volume 163 / Number 3 / November 2009 / Pages 215-242
Technical Paper / dx.doi.org/10.13182/NSE193-215
Articles are hosted by Taylor and Francis Online.
Expansion of domestic use of nuclear power to provide energy security and environmental sustainability requires minimization of the nuclear waste. To achieve this goal in the short term, transmutation of transuranic (TRU) elements in COmbined Non-Fertile and UO
For these designs a detailed assembly-level neutronic analysis has been performed using CASMO-4 to investigate cycle length, TRU management performance, and key reactor reactivity parameters, along with detailed intraassembly power peaking factors (IAPPFs). Various fuel mixing schemes and cooling times were evaluated. Using the IAPPF results, a full core thermal-hydraulic analysis using VIPRE was performed to validate thermal margins, and a loss-of-coolant-accident event was assessed using RELAP5. Based on the TRU management characteristics of these designs, metrics were developed to reflect the material handling difficulties of the multirecycled fuel, along with its repository impact. These parameters were compared to a standard once-through UO
TRU management results of CONFU-B and CONFU-C showed a net TRU destruction of 2 to 20 kg/TWh(electric) generated, with an FCC of 12 to 15 mills/kWh(electric), depending on the mixing strategy and cooling time chosen. Reactor control parameters and thermal margins were found to be comparable to an all-UO