American Nuclear Society
Home

Home / Publications / Journals / Nuclear Science and Engineering / Volume 198 / Number 6

Measurement of Photoneutrons from Depleted Uranium and Comparison Study Using MCNPX-PoliMi

Abbas J. Jinia, Tessa E. Maurer, Christopher A. Meert, Shaun D. Clarke, Hun-Seok Kim, David D. Wentzloff, Sara A. Pozzi

Nuclear Science and Engineering / Volume 198 / Number 6 / June 2024 / Pages 1166-1178

Research Article / dx.doi.org/10.1080/00295639.2023.2238169

Received:March 14, 2023
Accepted:July 11, 2023
Published:April 26, 2024

High-energy photon interrogation is a nondestructive technique that is used to detect special nuclear materials and characterize nuclear waste. The development of such systems is complex and requires Monte Carlo simulations to optimize system performance. Monte Carlo simulations rely on various scattering, absorption, and photonuclear cross-section data. While the scattering and absorption cross-section data have been extensively studied and validated with experiments, the results obtained from photonuclear simulations are often found to underpredict measured results, indicating uncertainties in the photonuclear cross sections themselves. Thus, there is a need for new measured results that can be used to quantify underpredictions in simulations using photonuclear cross-section data. In the present work, we interrogated depleted uranium with a 9-MV electron linac and detected photoneutrons with trans-stilbene organic scintillators. The measurement of photoneutrons with organic scintillators is challenging due to the presence of the intense photon flux, which causes issues such as pulse pile-up, detector saturation, and poor signal-to-background ratio. To mitigate these challenges, we used iron and polyethylene shielding of varying thicknesses around the depleted uranium target and a neural network–based digital pulse processing algorithm to recover neutron and photon information from piled-up events. Our goal was to compare the measured photoneutron count rate with the simulated rate obtained using the MCNPX-PoliMi transport code. For a light output window of 0.28 to 2.67 MeVee (1.66- to 6.85-MeV proton recoil energy), we found that the simulated count rate obtained using the ENDF/B-VII photonuclear cross-section library underpredicts the measured rate by 32.8% 3.2%. Additionally, we compared the simulated and measured photoneutron light output distributions. For the least thicknesses of shielding, the simulation was found to underpredict measurements in the 0.70- to 2.67-MeVee light output window. For the greatest thicknesses of shielding, the simulation was found to underpredict the measurement across the entire light output window of 0.28 to 2.67 MeVee.