Nuclear Science and Engineering / Volume 198 / Number 5 / May 2024 / Pages 1131-1154
Research Article / dx.doi.org/10.1080/00295639.2023.2229193
Articles are hosted by Taylor and Francis Online.
Canada has operated 17 research reactors at 11 different locations. The spent fuel from these research reactors differs significantly from CANDU fuel, which makes up the vast majority of spent fuel in Canada, and will eventually require disposal. The focus of this paper is to identify properties specific to Canadian research reactor fuel designs that would impact their suitability for disposal. The radionuclide inventory, hazardous chemical inventory, decay heat, residual enrichment, radiation decay rates, and gas generation of several Canadian research reactor fuel designs were simulated using the SCALE 6.2.4 software suite. The National Research Universal U3Si/Al dispersion rod, the National Research Experimental uranium metal X-rod, the Royal Military College UO2 SLOWPOKE-2 core, and the Whiteshell Reactor 1 uranium carbide bundle were investigated. Fuel burnup is the primary driver for the concentration of most radionuclides, hazardous chemicals, decay heat, and radiation decay rates. Carbon-14, chlorine-36, and mercury are driven by initial impurities in the fuel, which vary by fuel design. Low burnup, enriched fuels constitute a reasonable bounding case for the evaluation of criticality safety and proliferation risks. Canadian research reactor fuels are unlikely to present a greater risk of over pressurization from helium generation than CANDU fuel. Overall, the small volume of Canadian research reactor fuels requiring disposal is an important factor in the evaluation of disposal requirements.