Nuclear Science and Engineering / Volume 198 / Number 3 / March 2024 / Pages 545-564
Research Article / dx.doi.org/10.1080/00295639.2023.2194219
Articles are hosted by Taylor and Francis Online.
The predictor-corrector quasi-static method (PCQM) is used to solve the transient problem in the STREAM code, a steady-state and transient reactor analysis code with the method of characteristics. In PCQM, the angular neutron flux undergoes a factorized split to form the product of shape and amplitude functions. The time-dependent neutron transport equation is solved to obtain the shape function whereas the amplitude function is obtained by resolving the exact point kinetics equations (EPKEs). A two-level coarse mesh finite difference technique is implemented to reduce the transient running time of the transport solution. Moreover, high-order polynomial interpolation is applied to the kinetics parameters utilized in EPKEs to reduce the error when the reactivity insertion is nonlinear. Several numerical benchmarks are solved to justify the application of the procedure, proving that the method maintains solution accuracy.