Nuclear Science and Engineering / Volume 198 / Number 1 / January 2024 / Pages 167-173
Articles are hosted by Taylor and Francis Online.
Copper-67 is a radioisotope of interest for medical imaging and therapy as well as for understanding stellar and interstellar evolution pertaining to the formation of proton-rich nuclei. Since 67Cu decays 100% to 67Zn, understanding this reaction can shed light on the abundance of this and other p-nuclei elements in the universe. Here, the photonuclear production of 67Cu from 71Ga and natural gallium is examined as an alternative to its photoproduction from zinc. Two research and development production runs were performed at Thomas Jefferson National Accelerator Facility using an electron linac. During the first run, an 805-W, 30.9-MeV beam was used to irradiate a 1-mm tungsten radiator to create a bremsstrahlung flux. The resulting gamma photons irradiated 50.9 g of natural gallium encased in a graphite crucible for 24.2 h; 7.02 Bq/W∙s∙kg of 67Cu activity was produced. During the second run, a 4380-W, 31.5-MeV beam was used for 12.0 h on the same target containing 60 g of natural gallium; 6.41 Bq/W∙s∙kg of 67Cu activity was produced. Because of the difficulties in spectroscopically differentiating 67Cu from 67Ga, prior to each run, an isotopically pure 71Ga disk was irradiated using a 100-W beam for 1 h, at the same respective energies. These baseline irradiations allowed for separation of 67Cu from 67Ga in the spectroscopic measurements of the natural gallium targets.