American Nuclear Society
Home

Home / Publications / Journals / Nuclear Science and Engineering / Volume 196 / Number 1S

Digital Engineering for Integrated Modeling and Simulation for Building-Piping Systems Through Interoperability Solutions

Nicholas Crowder, Joomyung Lee, Abhinav Gupta, Kevin Han, Saran Bodda, Christopher Ritter

Nuclear Science and Engineering / Volume 196 / Number 1S / October 2022 / Pages S260-S277

Technical Paper / dx.doi.org/10.1080/00295639.2022.2055705

Received:July 9, 2021
Accepted:March 14, 2022
Published:October 11, 2022

Designing piping systems for nuclear power plants involves engineers from multiple disciplines (i.e., thermal hydraulics, mechanical engineering, and structural/seismic) and close coordination with the contractors who build the plant. Any design changes during construction need to be carefully communicated and managed with all stakeholders in order to assess risks associated with the design changes. To allow the quick assessment of building and piping design changes through a streamlined building-piping coupled analysis, this paper presents a novel interoperability solution that converts bidirectionally between building information models (BIMs) and pipe stress models. Any design changes during construction that are shown in an as-built BIM are automatically converted into a pipe stress model. Any further design changes due to building-piping interaction analyses are converted back to the BIM for the contractor and other designers to access the latest model. Two case studies are presented to illustrate the bidirectional conversion that allows an integrated coupled analysis of the building-piping system to account for their interactions.