Nuclear Science and Engineering / Volume 196 / Number 7 / July 2022 / Pages 886-898
Technical Paper / dx.doi.org/10.1080/00295639.2022.2027737
Articles are hosted by Taylor and Francis Online.
Nuclear reactor core power level control and the average coolant temperature usually adopt independent control strategies, but tracking only one single core power makes the coolant temperature control risky in a disturbance situation. To solve this problem, a reference trajectory calculation based on the coolant outlet temperature under the steady state of the reactor power is designed; then, a model predictive controller with a dual objective optimization function, which also includes a relaxation factor, is constructed. By setting the tracking weight matrix in the controller, the tendency setting of dual target trajectory tracking can be realized. Simulation experiments verify the effectiveness of core power level control considering the coolant outlet temperature trajectory tracking. Furthermore, the tracking effect of different weight matrices is simulated and analyzed. The results show that the developed control strategy is more flexible than a single control scheme.