American Nuclear Society
Home

Home / Publications / Journals / Nuclear Science and Engineering / Volume 183 / Number 1

Code Development and Target Station Design for Chinese Accelerator-Driven System Project

Han-Jie Cai, Fen Fu, Jian-Yang Li, Ya-Ling Zhang, Xun-Chao Zhang, Xue-Song Yan, Zhi-Lei Zhang, Jian-Ya Xv, Mei-Ling Qi, Lei Yang

Nuclear Science and Engineering / Volume 183 / Number 1 / May 2016 / Pages 107-115

Technical Paper / dx.doi.org/10.13182/NSE15-59

First Online Publication:March 10, 2016
Updated:May 3, 2016

The Institute of Modern Physics, Chinese Academy of Sciences performs research and development on the target station of an accelerator-driven system (ADS) under the China ADS project. A newly developed Monte Carlo program for the design of the target station named GMT1.0 is presented. The program is designed for a massively parallelized simulation of the initiative granular-flow target concept. Based on the combination of the Intranuclear Cascade of Leige (INCL) model and the ABLA evaporation/fission model, GMT1.0 integrates a particle transport code and a nuclear reaction code to simulate a spallation target. For validation, a series of calculations of neutronics characteristics and heat-deposit distributions of solid targets were performed, and a high degree of accuracy was shown for GMT1.0. Using GMT1.0, a systematic study of the neutron economy of the target was performed and the neutronics characteristics of the most optimal parameters were illustrated well.