Nuclear Science and Engineering / Volume 94 / Number 2 / October 1986 / Pages 157-166
Technical Paper / dx.doi.org/10.13182/NSE86-A27450
Articles are hosted by Taylor and Francis Online.
A new algorithm for modeling charged-particle transport in a fully ionized plasma is presented. A standard multigroup discretization of the Fokker-Planck-Boltzmann equation is transport-corrected to implicitly include the anisotropic effects of both coulomb scattering and nuclear reactions. This allows the subsequent application of the Levermore flux-limited diffusion theory, which was originally developed for isotropic radiative transfer calculations. A finite differencing of the resulting spatial transport operator is constructed so as to yield centered and upwinded operators in the diffusion and free-streaming limits, respectively. The time integration is performed by the general purpose ordinary differential equation solver TORANAGA. This approach results in a highly vectorizable algorithm that has been implemented on the CRAY-1. Some numerical results are presented that compare this algorithm to the corresponding, but far more expensive, Monte Carlo calculations.