Nuclear Science and Engineering / Volume 149 / Number 3 / March 2005 / Pages 259-269
Technical Paper / dx.doi.org/10.13182/NSE05-A2492
Articles are hosted by Taylor and Francis Online.
Convergence properties were investigated for the response matrix method with various finite-difference formulations that can be utilized in the nonlinear acceleration method. The nonlinear acceleration method is commonly used for the diffusion calculation with the advanced nodal method or the transport calculation with the method of characteristics. Efficiency of the nonlinear acceleration method depends on convergences on two different levels, i.e., those of the finite-difference calculation and the correction factor. This paper focuses on the former topic, i.e., the convergence property of finite-difference calculations using the response matrix method. Though various finite-difference formulations can be used in the nonlinear acceleration method, systematic analysis of the convergence property for the finite-difference calculation has not been carried out so far. The spectral radius of iteration matrixes was estimated for the various finite-difference calculations assuming the response matrix method with the red-black sweep. From the calculation results, numerical stability of the various finite-difference formulations was clarified, and a favorable form of the finite-difference formulation for the nonlinear iteration was recommended. The result of this paper will be useful for implementation of the nonlinear acceleration scheme with the response matrix method.