Nuclear Science and Engineering / Volume 111 / Number 3 / July 1992 / Pages 229-240
Technical Paper / dx.doi.org/10.13182/NSE92-A23937
Articles are hosted by Taylor and Francis Online.
The concept of probabilistic reactor dynamics is formalized in which deterministic reactor dynamics is supplemented by the fact that deterministic trajectories in phase-space switch to other trajectories because of stochastic changes in the structure of the reactor such as a change of state of components as a result of a malfunction, regulation feedback, or human error. A set of partial differential equations is obtained under a Markovian assumption from the Chapman-Kolmogorov equation giving the probability π(x, i, t) that the reactor is in a state x where vector x describes neutronic and ther-mohydraulic variables, and in a component state i at time t. The integral form is equivalent to an event tree where branching occurs continuously. A backward Kolmogorov equation allows evaluation of the probability and the average time for x(t) to escape from a given safety domain.