American Nuclear Society
Home

Home / Publications / Journals / Nuclear Science and Engineering / Volume 38 / Number 3

Control of Xenon Spatial Oscillations

Weston M. Stacey, Jr.

Nuclear Science and Engineering / Volume 38 / Number 3 / December 1969 / Pages 229-243

Technical Paper / dx.doi.org/10.13182/NSE69-A21157

The problem of optimally controlling xenon spatial oscillations is formulated as a problem in the calculus of variations for distributed parameter systems. The resulting partial differential equations (space- and time-dependent) are then approximated by a nodal representation to obtain a set of ordinary differential equations (time-dependent) with mixed (initial and final) boundary conditions. An iterative solution scheme, which utilizes a quasilinearization of the equations and a transformation matrix relating initial to final values of certain variables, is employed to obtain numerical results. Feasibility of the method is established by several sample calculations. A physical interpretation is given the Lagrange multiplier functions which initially are introduced for mathematical considerations.