Nuclear Science and Engineering / Volume 133 / Number 1 / September 1999 / Pages 1-22
Technical Paper / dx.doi.org/10.13182/NSE99-A2069
Articles are hosted by Taylor and Francis Online.
A liquid-metal reactor was designed for the primary purpose of burning the minor actinide waste from commercial light water reactors (LWRs). The design was constrained to maintain acceptable safety performance as measured by the burnup reactivity swing, the Doppler constant, and the sodium void worth. Sensitivity studies were performed for homogeneous and decoupled core designs, and a minor actinide burner design was determined to maximize actinide consumption and satisfy safety constraints. One of the principal innovations was the use of two core regions, with a fissile plutonium outer core and an inner core consisting only of minor actinides. The physics studies performed here indicate that a 1200-MW(thermal) core is able to consume the annual minor actinide inventory of about 16 LWRs and still exhibit reasonable safety characteristics.