American Nuclear Society
Home

Home / Publications / Journals / Nuclear Science and Engineering / Volume 132 / Number 1

Neural Network and Perturbation Theory Hybrid Models for Eigenvalue Prediction

Michael G. Lysenko, Hing-Ip Wong, G. Ivan Maldonado

Nuclear Science and Engineering / Volume 132 / Number 1 / May 1999 / Pages 78-89

Technical Paper / dx.doi.org/10.13182/NSE99-A2050

Although artificial neural networks (ANNs) are powerful tools in terms of their high posttraining computational speed and their flexibility to construct complex nonlinear mappings from relatively few known data samples, a survey of past applications of ANNs to the area of core parameter prediction reveals drawbacks such as low prediction accuracy, lack of robust generalization, large network dimensionality, and typically high training requirements. This study provides a brief survey of past and recent applications of ANNs to direct core parameter predictions as well as an alternate hybrid approach that avoids the aforementioned shortcomings of ANNs by combining the mathematical rigor of generalized perturbation theory along with the strong qualities of ANNs in error prediction situations. The results presented focus exclusively on the neutron diffusion's fundamental mode eigenvalue (i.e., 1/keff) and demonstrate the viability of computationally inexpensive adaptive ANN error controllers for perturbation theory applications.