Nuclear Science and Engineering / Volume 132 / Number 1 / May 1999 / Pages 16-29
Technical Paper / dx.doi.org/10.13182/NSE99-A2046
Articles are hosted by Taylor and Francis Online.
A two-dimensional energy and time-of-flight charged-particle spectrometer has been developed and used to measure the double-differential cross-section (DDX) data of (n, xp) and (n, x) reactions for several elements with 14.1-MeV incident neutrons at OKTAVIAN, the Intense 14-MeV Neutron Source Facility of Osaka University. The DDX data of the 51V(n, xp), 51V(n, x
), natFe(n, xp), natFe(n, x
), 59Co(n, xp), 59Co(n, x
), natNi(n, x
), natCu(n, x
), 93Nb(n, xp), 93Nb(n, x
), and natMo(n, xp) reactions are measured. The angle-integrated energy differential cross-section (EDX) data were deduced from the measured DDX data and compared with other experimental results [except for the 59Co(n, xp) reaction] and evaluated nuclear data of JENDL fusion file (JENDL-FF). A comparison was also done with the ENDF/B-VI for the total reaction cross sections of all measured reactions except for the natMo(n, xp) reaction and the EDX of the natNi(n, x
) and natCu(n, x
) reactions. The theoretical calculations were done by using the SINCROS-II code. The measured data agreed fairly well with other data for almost all the reactions. The JENDL-FF and SINCROS-II data underestimate the measured EDX data for the reactions of 93Nb(n, x
) and natMo(n, xp). For the natFe(n, xp), natFe(n, x
), 59Co(n, x
), and natNi(n, x
) reactions, smaller data are given than other data, i.e, other experimental data, JENDL-FF, and ENDF/B-VI. The SINCROS-II code can reproduce well for both the proton and alpha-particle emission cross-section values.