Nuclear Science and Engineering / Volume 82 / Number 3 / December 1982 / Pages 338-353
Technical Paper / dx.doi.org/10.13182/NSE82-338
Articles are hosted by Taylor and Francis Online.
Solving problems of reactor physics is well developed for typical pressurized water and boiling water reactor geometries but less developed for high-temperature gas-cooled reactor, liquid-metal fast breeder reactor, and WWER (BBP) geometries. Several problems of reactor physics can be formulated in a geometry-independent fashion with the help of symmetry considerations, which allows the solution to be decomposed into eigenfunctions of the symmetry operations. An analytic coarse-mesh solution is derived without resorting to the cross leakage concept. The method is applicable to arbitrary geometries. A second-stage homogenization based on the Bloch theorem is presented. It is shown that the solution of the transport equation can always be made up from a cell problem set (microfunctions) and from an overall solution to the diffusion equation (macrofunction).