Nuclear Science and Engineering / Volume 88 / Number 3 / November 1984 / Pages 412-424
Technical Paper / dx.doi.org/10.13182/NSE84-A18595
Articles are hosted by Taylor and Francis Online.
A stability model of flow oscillations observed in two-phase flow tests in a CANDU-like experimental rig is developed. The model is derived by linearizing and solving one-dimensional, homogeneous two-phase flow conservation equations. The flow oscillations are explained in terms of the response of the pressure in the two-phase region to a change in the single-phase flow. A simple instability criterion valid for high-pressure thermosyphoning is given. The observed and predicted periods and damping ratios are generally found to be in good agreement. Combined with a simple, analytic, steady-state model to give approximate loop operating conditions, the stability model is used to generate stability maps for thermosyphoning conditions.