American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 55 / Number 3

Design of the NIF Cryogenic Target System

C. R. Gibson, D. P. Atkinson, J. A. Baltz, V. P. Brugman, F. E. Coffield, O. D. Edwards, B. J. Haid, S. F. Locke, T. N. Malsbury, S. J. Shiromizu, K. M. Skulina

Fusion Science and Technology / Volume 55 / Number 3 / April 2009 / Pages 233-236

Technical Paper / Eighteenth Target Fabrication Specialists' Meeting / dx.doi.org/10.13182/FST08-3453

The U.S. Department of Energy has embarked on a campaign to conduct credible fusion ignition experiments on the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory in 2010. The target assembly specified for this campaign requires the formation of a deuterium-tritium fuel ice layer in a 2-mm-diam capsule at the center of a 9-mm-long × 5-mm-diam cylinder, called a hohlraum. The ice layer must be formed and maintained at temperatures below 20 K. At laser shot time, the target is positioned at the center of the NIF target chamber, aligned to the laser beams, and held stable to <7-m root-mean-square. We have completed the final design of the cryogenic target system and are currently integrating the devices necessary to create, characterize, and position the cryogenic target for ignition experiments.