American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 79 / Number 7

Development of New Magnetron Sputter Deposition Processes for Laser Target Fabrication

S. O. Kucheyev, S. J. Shin, L. B. Bayu Aji, J. H. Bae, A. M. Engwall, G. V. Taylor

Fusion Science and Technology / Volume 79 / Number 7 / October 2023 / Pages 823-840

Research Article / dx.doi.org/10.1080/15361055.2023.2184667

Received:November 30, 2022
Accepted:February 21, 2023
Published:August 30, 2023

Magnetron sputter deposition is an enabling technology for laser target fabrication. Solutions are readily available for the deposition of most sub-micron-thick elemental films on planar substrates. However, major challenges still remain for the development of robust deposition processes in regimes of ultrathick (over  μm) coatings and nonplanar substrates. These challenging deposition regimes are directly relevant to laser target applications, including both sphero-cylindrical hohlraums and spherical ablators for inertial confinement fusion (ICF) targets. Understanding underlying physical mechanisms for a specific material system is crucial for process development, given the overall complexity of the deposition process, its nonlinear dependence on deposition parameters, and a very large process space, often precluding conventional process optimization approaches. Here, we describe our approach to developing new deposition processes and give practical advice with examples of new results from our ongoing studies of glassy boron carbide ceramics for next-generation ICF ablators and nonequilibrium gold-tantalum alloys for hohlraums for magnetized ICF schemes. Emphasis is given to two major challenges of ultrathick coatings related to achieving process stability and reducing residual stress.