American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 79 / Number 6

Effect of Positive Polarity in an Inertial Electrostatic Confinement Fusion Device: Electron Confinement, X-Ray Production, and Radiography

Darpan Bhattacharjee, Smruti Ranjan Mohanty, Sayan Adhikari

Fusion Science and Technology / Volume 79 / Number 6 / August 2023 / Pages 671-682

Research Article / dx.doi.org/10.1080/15361055.2023.2176690

Received:November 11, 2022
Accepted:January 31, 2023
Published:July 7, 2023

The conventional inertial electrostatic confinement fusion (IECF) operation is based on the application of high negative voltage to the central grid, which results in the production of neutrons due to the fusion of lighter ions. The device can also be used as an X-ray source by altering the polarity of the central grid. In this work, electron dynamics during the positive polarity of the central grid are studied using the object-oriented particle-in-cell code XOOPIC. The simulated trapped electron density inside the anode is found to be on the order of 1016 m when 10 kV is applied to the anode. The recirculatory characteristics of the electrons are also studied from the velocity distribution function. A scintillator-based photomultiplier tube is used to detect the produced X-ray. The X-ray-emitting zones of the device are investigated by pinhole imaging techniques. Last, the radiography of metallic as well as biological samples are reported in the later part of this paper. This study shows the utilization of the IECF device when the polarity of the central grid is reversed.