American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 79 / Number 6

Plasma Wall Interaction of New Type of Divertor Heat Removal Component in LHD Fabricated by Advanced Multi-Step Brazing (AMSB)

Masayuki Tokitani, Yukinori Hamaji, Yutaka Hiraoka, Yuki Hayashi, Suguru Masuzaki, Hitoshi Tamura, Hiroyuki Noto, Teruya Tanaka, Tatsuya Tsuneyoshi, Yoshiyuki Tsuji, Gen Motojima, Hiromi Hayashi, Takanori Murase, Takeo Muroga, Akio Sagara, Tomohiro Morisaki

Fusion Science and Technology / Volume 79 / Number 6 / August 2023 / Pages 651-661

Research Article / dx.doi.org/10.1080/15361055.2023.2176184

Received:November 16, 2022
Accepted:January 31, 2023
Published:July 7, 2023

A novel method, called Advanced Multi-Step Brazing, was developed to fabricate a new type of divertor heat removal component with W armor and an oxide-dispersion-strengthened copper (GlidCop®) heat sink in the initial phase of our work. Later, a new type of divertor heat removal component, which has a rectangular-shaped cooling channel with a V-shaped staggered-rib structure in the GlidCop heat sink, was developed. This new component showed an extremely high heat removal capability during a ~30 MW/m2 steady-state heat loading condition in our previous work. In this work, the new component was installed in the divertor strike position of the Large Helical Device and exposed to neutral beam injection–heated plasma discharges with 1180 shots (~8000 s) in total. Though submillimeter-scale damage, such as unipolar arc trails and microscale cracks, was identified on the W surface, the extremely high heat removal capability did not show any sign of degradation over the experimental period. On the other hand, remarkable sputtering erosion and redeposition phenomena, due to the strong influx of the divertor plasma, was confirmed on the W armor.