Fusion Science and Technology / Volume 79 / Number 2 / February 2023 / Pages 151-161
Technical Paper / dx.doi.org/10.1080/15361055.2022.2126292
Articles are hosted by Taylor and Francis Online.
An integrated workflow for fast-ion analysis was developed by adapting the One Modeling Framework for Integrated Task (OMFIT) workflow manager to support a standard and unified analysis platform for KSTAR users. The newly established analysis suite offers a graphical user interface–based workflow to enable users to readily access and handle experimental data archived in various data formats and servers. Further, users can analyze the data by importing modules designed for conducting certain tasks, such as profile fitting, equilibrium reconstruction, and postprocessing of tokamak data. The procedures for preparing the inputs for fast-ion simulations are streamlined by a common workflow manager, which enables the parallel processing of various tasks to efficiently analyze large fast-ion datasets. The OMFIT platform comprises a flexible Python-based application that enables users to freely manipulate the Python scripts for applications that are unavailable in the standard workflow. The framework also offers mapping tools to translate the output data into the Integrated Modeling and Analysis Suite format to maintain application compatibility for future ITER burning plasma experiments.