Fusion Science and Technology / Volume 78 / Number 8 / November 2022 / Pages 649-663
Technical Paper / dx.doi.org/10.1080/15361055.2022.2101833
Articles are hosted by Taylor and Francis Online.
Transient coaxial helicity injection (transient CHI), first developed on the Helicity Injected Torus-II (HIT-II) and later on the National Spherical Torus Experiment (NSTX) for implementing solenoid-free plasma current startup capability in a spherical tokamak (ST), is now planned to be tested on the PEGASUS-III ST using a novel double-biased configuration. Such a configuration is likely needed for transient CHI deployment in a reactor. The transient CHI system optimization will be studied on PEGASUS-III to enable startup toroidal persisting currents at the limits permitted by the external poloidal field coils. A transient CHI discharge is generated by driving injector current along magnetic field lines that connect the inner and outer divertor plates on one end of the ST. Simulations using the Tokamak Simulation Code are used to assess the transient CHI toroidal current generation potential and electrode gap location on the PEGASUS-III. While past transient CHI systems have used high-voltage, oil-filled capacitors for driving the injector current, for improved safety, PEGASUS-III will use a high-current capacitor bank based on low-voltage electrolytic capacitors. The designed and fabricated system is capable of over 32 kA. The modular design features permit the system to be upgraded to higher currents, as needed, to meet the future needs of the PEGASUS-III facility.