Fusion Science and Technology / Volume 76 / Number 2 / February 2020 / Pages 110-119
Technical Paper / dx.doi.org/10.1080/15361055.2019.1693204
Articles are hosted by Taylor and Francis Online.
A custom designed and manufactured set of ion guns has been in use at the University of Wisconsin Inertial Electrostatic Confinement Laboratory for both beam fusion experiments and materials implantation experiments. For the first time, direct measurements have been made on the spatial profiles and the mass compositions of He and D ion beams produced by these guns. The results validate assumptions about the circular Gaussian spatial profiles for both He and D ion beams. Mass composition measurements of the He beam identified a pressure-dependent minimum impurity content of 15% N+. The D beam contained relative molecular ion fractions of 58% D3+, 32% D2+, and 10% D+ with impurities of 15% to 20% D2O+. A new experimental platform, the Ion Beam and Source Analyzer was developed to perform these experiments on the ion guns used to irradiate candidate fusion materials.