Fusion Science and Technology / Volume 75 / Number 7 / October 2019 / Pages 621-635
Technical Paper / dx.doi.org/10.1080/15361055.2019.1623570
Articles are hosted by Taylor and Francis Online.
Erosion characteristics of tungsten-alternative plasma-facing materials (PFMs) were tested under high heat flux conditions in the electrothermal plasma source facility at Oak Ridge National Laboratory. The PFMs of interest are high-purity β-3C chemical vapor deposition silicon carbide (SiC) and the MAX phases Ti3SiC2 and Ti2AlC [MAX = chemical formula Mn+1AXn, where M is an early transition metal (such as Ti or Ta), A is an A-group element (such as Si or Al), and X is carbon or nitrogen]. An erosion analysis method was developed using a combination of focused ion beam microscopy and scanning electron microscopy, carving micro-trench geometries into polished sample surfaces. Samples of SiC, Ti3SiC2, and Ti2AlC were exposed to the electrothermal plasma source alongside tungsten and monocrystalline silicon. Samples were exposed to a Lexan polycarbonate (C16H14O3) electrothermal plasma stream in a He environment, at a specified impact angle, with infrared camera diagnostics. Edge localized mode–relevant heat fluxes of 0.9 to 1 GW/m2 over 1-ms discharges were generated on the target surfaces. Tungsten samples exhibited pronounced melt-layer formation and deformation, with measured molten pits 2 to 10 μm in diameter and melt-layer depths of up to 7 μm deep. Surface erosion rates for Ti3SiC2 and Ti2AlC ranged from 80 to 775 μm/s and 85 to 470 μm/s, respectively. Both MAX phases exhibited extreme surface fracture and material ejection, with damage depths past 4 μm for Ti2AlC and 11 μm for Ti3SiC2. SiC displayed the best performance, in one case surviving 15 consecutive electrothermal plasma exposures with an average erosion rate of about 29 μm/s and no surface fracturing. SiC erosion rates ranged from 23 to 128 μm/s.