American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 30 / Number 3P2B

Thermal Hydraulics Analysis of LIBRA-SP Target Chamber

E. A. Mogahed

Fusion Science and Technology / Volume 30 / Number 3P2B / December 1996 / Pages 1574-1578

Fusion Power Plants and Economics / dx.doi.org/10.13182/FST96-A11963175

Published:February 9, 2018

LIBRA-SP is a conceptual design study of an inertially confined 1000 MWe fusion power reactor utilizing self-pinched light ion beams. There are 24 ion beams which are arranged around the reactor cavity. The reaction chamber is an upright cylinder with an inverted conical roof resembling a mushroom, and a pool floor. The vertical sides of the cylinder are occupied by a blanket zone consisting of many perforated rigid HT-9 ferritic steel tubes called PERITs (PErforated RIgid Tube). The breeding/cooling material, liquid lead-lithium, flows through the PERITs, providing protection to the reflector/vacuum chamber so as to make it a lifetime component. The neutronics analysis and cavity hydrodynamics calculations are performed to account for the neutron heating and also to determine the effects of vaporization/condensation processes on the surface heat flux. The steady state nuclear heating distribution at the midplane is used for thermal hydraulics calculations. The maximum surface temperature of the HT-9 is chosen to not exceed 625°C to avoid drastic deterioration of the metal's mechanical properties. This choice restricts the thermal hydraulics performance of the reaction cavity. The inlet first surface coolant bulk temperature is 370°C, and the heat exchanger inlet coolant bulk temperature is 502°C.