American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 39 / Number 2P2

Solution Techniques for Magnetic Flux Evolution in Toroidal Plasmas

P. I. Strand, W. A. Houlberg

Fusion Science and Technology / Volume 39 / Number 2P2 / March 2001 / Pages 1091-1095

Plasma Engineering, Heating, and Current Drive / dx.doi.org/10.13182/FST01-A11963389

Published:February 8, 2018

The magnetic flux evolution problem in toroidal plasmas is formulated in a framework suitable for integrating externally imposed magnetic field components with internal components from bootstrap current and auxiliary current drive. The formulation is applicable to 3-dimensional (3-D) stellarator equilibria, and reduces to 2-D form for axisymmetric plasmas. Here the numerical implementation of this framework is described. Conservative integrations schemes, resolution close to the magnetic axis, and efficient methods for flux surface averaging are discussed. Results from the test code THRIFT (THRee dimensional Inductive Flux evolution in Toroidal plasmas) are used to illustrate numerical convergence properties for a low aspect ratio stellarator and the axisymmetric NSTX spherical torus.