American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 35 / Number 1T

Experimental Status of the Development of a Variable Specific Impulse Magnetoplasma Rocket

Jared P. Squire, Franklin R. Chang Díaz, F. Wally Baity, Glenn C. Barber, Mark D. Carter, Richard H. Goulding, Dennis Sparks, Greg McCaskill, Andrew V. Ilin, Roger D. Bengtson, Robert G. Bussell, Jr, Verlin T. Jacobson, Tim W. Glover

Fusion Science and Technology / Volume 35 / Number 1T / January 1999 / Pages 243-247

Oral Presentations / dx.doi.org/10.13182/FST99-A11963860

Published:February 8, 2018

The Advanced Space Propulsion Laboratory (ASPL) is developing a Variable Specific Impulse Magnetoplasma Rocket (VASIMR) using a Radio Frequency (RF) heated magnetic mirror operated asymmetrically. The system comprises of three stages: 1) plasma ionization and injection into the magnetic system; 2) ion heating by action of Ion Cyclotron Resonance Heating (ICRH); 3) plasma exhaust through a magnetic nozzle. The central experimental device is a small versatile tandem mirror configured system. The system can also be easily reconfigured to operate as a simple mirror. The total length of the device is 3.2 m, and the maximum magnetic field is 3.0 T. The exhaust end connects to a 5 m vacuum chamber where we are installing a 40,000 liter/second pumping capacity. Radio frequency power is available at approximately 3 MHz at up to 200 kW. A set of plasma diagnostics is being developed and installed, starting with two fast reciprocating probes, one quadruple Langmuir and one Mach.2 We are now evaluating the use of a helicon3 RF plasma source for an efficient ionization stage of the system. Initial results from experiments using a single double-half turn antenna are presented. In addition, we are exploring the use of a Lorentz Force Accelerator (LFA) as a plasma injector source.4