American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 26 / Number 3P2

Neutronics and Shielding Analysis of the National Ignition Facility

Jeffery F. Latkowski, Michael T. Tobin, M. S. Singh

Fusion Science and Technology / Volume 26 / Number 3P2 / November 1994 / Pages 842-846

National Ignition Facility / Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 / dx.doi.org/10.13182/FST94-A40260

The Department of Energy (DOE) is proposing to construct the National Ignition Facility (NIF) by the year 2001 to embark on a program to achieve ignition and modest gain in the laboratory. The NIF will use 1.8 MJ of 0.35 µm laser light, nearly a fifty-fold increase in energy over the Nova laser at Lawrence Livermore National Laboratory (LLNL). A 5-m radius spherical aluminum chamber will contain the target experiments and allow access to diagnostics for data collection. Based on a projected maximum annual yield of 385 MJ (1.4 × 1020 14 MeV neutrons), prompt annual doses will be < 1.2 µSv at the nearest site boundary, < 0.43 mSv immediately outside the Target Area, and < 30 µSv in the warroom and control room. The target chamber material has been selected in a trade-off between its mechanical properties and its neutron activation qualities. External target chamber shielding has been selected such that the total annual occupational dose to Target Area workers will be ≤ 5 mSv. Finally, some Target Area systems have been redesigned based on their neutron activation and residual dose rates. The operation of the NIF will have an insignificant impact to workers and the general population.