American Nuclear Society
Home

Home / Publications / Journals / Fusion Science and Technology / Volume 26 / Number 3P2

Target Area Chamber System Design for the National Ignition Facility

Richard Wavrik, Frank Dempsey, Andrew Anderson, John Boyes, Rojelio Garcia, Michael Tobin, Craig Olson, Victor Karpenko, Jeffrey Latkowski

Fusion Science and Technology / Volume 26 / Number 3P2 / November 1994 / Pages 785-790

National Ignition Facility / Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 / dx.doi.org/10.13182/FST94-A40250

The National Ignition Facility (NIF) is a proposed Department of Energy facility which will contribute to the resolution of important Defense Program and inertial fusion energy issues for energy production in the future. The NIF will consist of a laser system with 192 independent beamlets transported to a target chamber. The target chamber is a multi-purpose structure that provides the interface between the target and the laser optics. The chamber must be capable of achieving moderate vacuum levels in reasonable times; it must remain dimensionally stable within micron tolerances, provide support for the optics, diagnostics, and target positioner; it must minimize the debris from the x-ray and laser light environments; and it must be capable of supporting external neutron shielding. The chamber must also be fabricated from a low neutron activation material. The fusion reaction in the target gives off neutrons, x-ray and gamma rays. The x-rays and gamma rays interact with the interior of the target chamber wall while neutrons penetrate the wall. In order to minimize the neutron activation of components outside the target chamber and to absorb gammas emitted from the activated chamber, shielding will be placed immediately outside the chamber. The target chamber contains the target positioner. The target positioner moves the target from outside the chamber to the center of the chamber and positions the target at the focal spot of the laser beams. The target positioner must be survivable in a harsh radioactive environment. The materials used must be low activation and have a high stiffness to weight ratio to maintain target stability. This paper describes the conceptual design of the target chamber, target postioner, and shielding for the NIF.