Fusion Science and Technology / Volume 26 / Number 3P2 / November 1994 / Pages 527-531
Fusion Material and Plasma-Facing Component / Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 / dx.doi.org/10.13182/FST94-A40211
Articles are hosted by Taylor and Francis Online.
An upgrade of the MAGFIRE code used to model the vapor shield (VS) effect was needed to include: higher disruption heat fluxes of interest to ITER, a comparison of carbon to beryllium erosion depths and the effects of ion/electron beam charge separation in the VS. Results show that higher heat fluxes give a lower total energy transmission factor (f) as expected. Beryllium divertor plates have much higher erosion depths than do carbon as well as a higher f. Charge separation has a small effect on the VS stopping power for electrons and on the distribution of deposited energy in the VS. However, the effect will be more important as the disruption particle energy increases.